UTS site search

Dr Graziella Caprarelli


Obtained her PhD in Earth Sciences in 1991 in Italy (University La Sapienza, Rome).

She held two post-doctoral positions in Japan, at the Geological Survey of Japan (Tsukuba, Ibaraki-ken) and at the Tokyo Institute of Technology, before moving to Australia. She joined UTS in August 1996.

She was a NSF research scholar at NASA Johnson Space Center (Houston, TX, USA) in 2001-2002.

She received the Australian Journal of Earth Sciences 2004 award for Excellence in Reviewing. She was awarded from the Australian Academy of Science a Scientific Visit to Europe Grant to carry out research at the International Research School of Planetary Science (Pescara, Italy).

Her current appointment at UTS is as Senior Lecturer in the Department of Environmental Sciences [DES]. She is also the Deputy Director of the Faculty of Science Computational Research Support Unit, and the Deputy Chair of the departmental Honours Management Committee.


Dr. Graziella Caprarelli is an external collaborator of the International Research School of Planetary Sciences (Pescara, Italy) and an external associate of the Mars Express MARSIS scientific team.

She is Chair of the Special Group in Planetary Geoscience of the Geological Society of Australia, and a member of the Information Technology Committee of the American Geophysical Union. She was the 2002-2003 Chair of the NSW Division of the Geological Society of Australia.

She is member of the Editorial Board of the Australian Journal of Earth Sciences and was principal editor of a set of thematic papers on Martian studies in 2005.

She is a member of the steering committee that produced the first Australian Decadal Plan for Space Science, and a member of its working group in Planetary Sciences.

She is a member, and from January 2012 Deputy Chair, of the National Committee for Space Science for the Australian Academy of Science. She is a member of the Australian Centre for Astrobiology (UNSW).

In the News:

The final countdown: bidding farewell to the Space Shuttle program

ABC Meet a Scientist

Associate of the Faculty, School of Life Sciences
DipEngGeol (La Sapienza), MSc (La Sapienza), PhD (La Sapienza)

Research Interests

Dr. Caprarelli's area of research is in the study of volcanic and tectonic activity of Earth and Mars. She uses geochemical and geophysical data to draw interpretations regarding the specific geodynamic processes responsible for basaltic volcanism on terrestrial planets. She has published (as first author) in the peer-reviewed international journals:
Terra Nova
Journal of Volcanology and Geothermal Research
Mineralogy and Petrology
Australian Journal of Earth Sciences

At UTS Dr. Caprarelli has taught geochemistry, petrology, tectonics. Her current teaching duties are as subject coordinator for Geological Processes (subject code: 91149) and GIS and Remote Sensing (91120), as well as lecturing in Astrobiology in the subject The Biosphere (91107).

She has been (and is) principal supervisor or co-supervisor of Honours and PhD projects in geology, planetary science (Mars), and GIS and remote sensing applied to the study of environmental problems.


Caprarelli, G. 2008, 'The state of planetary science in Australia', DVD-ROM Proceedings of the 8th Australian Space Science Conference, Australian Space Science Conference, National Space Society of Australia Ltd, Canberra, Australia, pp. 1-15.
View/Download from: UTS OPUS
A head-count of Australia-based scientists doing research in planetary science was performed in the context of the drafting of the Decadal Plan for Space Sciences [1]. This paper builds on those findings. A search of papers published by Australia-based scientists in the period 2005-2008 was performed. The search returned 91 papers published in international journals by scientists distributed in 7 groups, of which 6 are identified by the affiliations of the researchers, and one, termed Others, is composed of individuals working independently. Correspondence analysis performed on the data returned distinctive associations of the ANU, UNSW and Others groups with the subdisciplines of cosmochemistry, astrobiology and mission data analysis, respectively. These associations are interpreted as indicating clusters of activity that are, or have the potential to grow into, areas of high productivity. A minimalist model to support and organise activity in the potential cluster represented by the Others is presented here.
Noman, M., Bennett, V., Caprarelli, G., Carter, B., Clarke, J., Nelson, D., Stegman, D., Taylor, S.R., Vladimirov, S. & Walter, M. 2007, 'Planetary science in Australia', Proceedings of the 7th Australian space science conference Sydney, Australian space science conference, National Space Society of Australia Ltd, Sydney, pp. 40-59.
View/Download from: UTS OPUS
Planetary science studies the origin of the solar system and whether life exists on other planets. It has the potential to change the way we vie the world and our selves. Planetary science offers a cost effective means for Australia to participate in a pretigious international arena. Space engages the public's imagination and can inspire young people in tehir choice of careers. Students gain a strong foundation in mathematics, fundamental sciences and advanced technology, thereby fostering creativity and promoting a culture of innovation. Despite the absence of a national space program, Australian planetary scientists have strong international reputations in cosmochemistry, planetary geology and planetary geophysics.
Anania, E.M., Caprarelli, G., Lake, M. & Di Lorenzo, S. 2006, 'Using mars global surveyor and mars odyssey date to reconstruct the volcano-tectonic history of Phaethontis region, Mars', Proceedings of the 6th Australian Space Science Conference, Australian Space Science Conference, National Space Society of Australia Ltd, Canberra, pp. 1-16.
View/Download from: UTS OPUS
In this paper we present part of an ongoing study to telemetry data of Phaethontis, aregion in the western hemisphere of Mars' Southern Highlands. in particular, we focus on an approximately 57,000 km2 area in Gorgonum Chaos. We selected THEMIS visual, MOC narrow angle and MOLA data abvailable from the Arizona State University and Malin Space Sceince Systems web-sites. We carried out multi-level processing of THEMIS and MOC data using the ISIS software and prcessed MOLA gridded data by the GMT software. After processing we input the images into ArcGIS software, We observed, identified and described, both 2- and 3-dimentionally, impact craters, chaotic and polygonal terrains, grabens and gullies. These landforms suggest a complex geological history involving sedimentary and tectonic processes such as meteoritic impact, the presence of underground water and ice, desiccation or freezing of wet sediemnts at least two episodes of extension, and recent aeolian activity.
Rickwood, P., Giurco, D., Glazebrook, G.J., Kazaglis, A., Thomas, L.E., Zeibots, M.E., Boydell, S., White, S., Caprarelli, G. & McDougall, J. 2007, 'Integrating population, land-use, transport, water and energy-use models to improve the sustainability of urban systems', State of Australian Cities (SOAC) Conference, State of Australian Cities Conference, SOAC, Adelaide, pp. 314-324.
View/Download from: UTS OPUS
Caprarelli, G., Pondrelli, M., Di, L.S., Marinangeli, L., Ori, G. & Neukum, G. 2006, 'Mars express high resolution stereo camera: results of observations of north Tyrrhena terra, Mars', Proceedings of the 6th Australian Space Science Conference, Australian Space Science Conference, National Space Society of Australia Ltd, Canberra, Australia, pp. 28-43.
View/Download from: UTS OPUS
The High Resolution Stereo Camera (HRSC) on board Mars Express has been transmitting high quality imagery and altimetry data since reaching martian orbit. Observations from orbits h0962 and g0951 showed tectonic features in wto selected areas of north Tyrrhena Terra, in a sub-equitorial region of the southern hemisphere characterised by flat surfaces that could be interpreted as covered by either sedimentary or volcanic deposits. Morphometric analysis of a narrow N-S trending valley, about 80 km long, in the southernmost of the selected areas indicates that this valley formed by crstal extension. In the northernmost area, observation of NW-SE trending ridges characterised by steep SW facing lobate scarps and gentler NE sloping back carps is consistent with prior oberservations of NW-SE trending and NE dipping structures. The HRSC-aided identification of subtle structural features is important for geological reconstruction of Mars.

Journal articles

Bathgate, E.J., Maynard-Casely, H.E., Caprarelli, G., Xiao, L., Stuart, B., Smith, K.T. & Pogson, R. 2015, 'Raman, FTIR and XRD study of Icelandic tephra minerals: Implications for Mars', Journal of Raman Spectroscopy, vol. 46, no. 10, pp. 846-855.
View/Download from: Publisher's site
Copyright © 2015 John Wiley & Sons, Ltd. Essential to the success of proposed planetary Raman spectroscopy missions will be the preparation of comprehensive libraries of spectra and a greater understanding of the current limitations of Raman spectroscopy. Seven samples of Icelandic tephra were analysed using X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared (FTIR) as an analogue for Martian rocks. The results from these three spectroscopic techniques were compared with the success of mineral identification of each method differing. Some minerals such as ilmenite and flouroapatite were identified using XRD and not found in the Raman spectra. Olivine, hematite and anatase were detected by Raman spectroscopy but were not observed in the XRD patterns. The FTIR results gave essential information on the presence of H2O in the samples. The impact of fluorescence on Raman spectra of some minerals is still a major concern as this is the most likely reason for some of the diagnostic mineral peaks not showing in the Raman spectra.
Fletcher, S., Caprarelli, G., Merif, J., Andresen, D., Hal, S.V., Stark, D. & Ellis, J. 2014, 'Epidemiology and geographical distribution of enteric protozoan infections in sydney, australia.', J Public Health Res, vol. 3, no. 2, p. 298.
View/Download from: UTS OPUS or Publisher's site
BACKGROUND: Enteric protozoa are associated with diarrhoeal illnesses in humans; however there are no recent studies on their epidemiology and geographical distribution in Australia. This study describes the epidemiology of enteric protozoa in the state of New South Wales and incorporates spatial analysis to describe their distribution. DESIGN AND METHODS: Laboratory and clinical records from four public hospitals in Sydney for 910 patients, who tested positive for enteric protozoa over the period January 2007 - December 2010, were identified, examined and analysed. We selected 580 cases which had residence post code data available, enabling us to examine the geographic distribution of patients, and reviewed the clinical data of 252 patients to examine possible links between protozoa, demographic and clinical features. RESULTS: Frequently detected protozoa were Blastocystis spp. (57%), Giardia intestinalis (27%) and Dientamoeba fragilis (12%). The age distribution showed that the prevalence of protozoa decreased with age up to 24 years but increasing with age from 25 years onwards. The geographic provenance of the patients indicates that the majority of cases of Blastocystis (53.1%) are clustered in and around the Sydney City Business District, while pockets of giardiasis were identified in regional/rural areas. The distribution of cases suggests higher risk of protozoan infection may exist for some communities. CONCLUSIONS: These findings provide useful information for policy makers to design and tailor interventions to target high risk communities. Follow-up investigation into the risk factors for giardiasis in regional/rural areas is needed. Significance for public healthThis research is significant since it provides the most recent epidemiological update on the common enteric protozoa affecting Australians. It reveals that enteric protozoa cause considerable disease burden in high risk city dwellers, and provides the evidence base for development of targeted ...
Caprarelli, G. & Fletcher, S. 2014, 'A brief review of spatial analysis concepts and tools used for mapping, containment and risk modelling of infectious diseases and other illnesses', PARASITOLOGY, vol. 141, no. 5, pp. 581-601.
View/Download from: Publisher's site
Caprarelli, G. & Wang, B.Y. 2012, 'Wet Mars implications of revised scaling calculations for Evros Vallis', AUSTRALIAN JOURNAL OF EARTH SCIENCES, vol. 59, no. 2, pp. 263-276.
View/Download from: UTS OPUS or Publisher's site
Caprarelli, G. & Leitch, E.C. 2009, 'Volcanic and structural history of the rocks exposed at Pickering Crater (Daedalia Planum, Mars)', Icarus, vol. 202, no. 2, pp. 453-461.
View/Download from: UTS OPUS or Publisher's site
In the western hemisphere of Mars Amazonian volcanism from Arsia Mons produced the smooth surfaces of Daedalia Planum and masks older rocks. Close to the southern termination of Daedalia Planum basement rocks are exposed in which are preserved craters that escaped or were only partially filled by this most recent volcanism. Pickering Crater is an approximately 130 km diameter crater. The youngest lavas flowed into this crater from Daedalia Planum by way of a NW rim breach, covering its western part. East of a well-defined flow front an older lava sequence with a distinctive platy surface and derived from a more proximal unestablished source to the northeast is exposed. Several units are identified within this sequence on the basis of surface texture, which is more subdued in progressively older rocks. Only local mapping of the flow front boundaries of these units is possible because of incomplete coverage by high resolution imagery. During emplacement of the older lavas a NE-SW striking en echelon graben system and parallel smaller troughs and dikes formed under inferred regional NW-SE extension. A much earlier strike-slip regime pre-dating the lavas exposed in the crater floor is postulated, based on the highly fretted nature of the rim of Pickering Crater and an elongated smaller crater to its northeast, approximately 40 km long in the NE-SW direction. The rims of these craters contrast with that of a smoother rimmed impact crater in the southeast that was excavated subsequent to strike-slip deformation but prior to the emplacement of platy surfaced lavas. © 2009 Elsevier Inc. All rights reserved.
Och, D.J., Leitch, E.C. & Caprarelli, G. 2007, 'Geological units of the Port Macquarie- Tacking Point tract, north-eastern Port Macquarie Block, Mid North Coast region of NSW', Quarterly Notes Geological Survey of New South Wales, vol. October 20, no. 126, pp. 1-19.
View/Download from: UTS OPUS
The Point macquarie-Tacking Point coastline provides excellent exposures of the accretionary subduction complex and youger magmatic arc rocks that make up much of the New England Fold Belt (also known as the New Enagland Orogen) in north-eastern New South Wales. None geological units, including six formally defined here (Port macquarie Serpentineite, Rocky Beach Metamorphic Melange, Tacking Point Gabbro,Town beach Diorite, Nobbys Beach Lamprophyre and Sea Acres Dolerite) have been identified along this coastline tract. The kaikeree Metadolerite has been redefined. The oldest rocks are prograde lawsoniate eclogite and retrograde blueschist blocks embedded in the chlorite-actinolite schist matrix of the Rocky Beach Metamorphic Melange that occurs as a slab within te Port Macquarie Serpentine. The Port Macquartie Serpentine is a product of alteration of cumulate ultramafic rocks of a c.530 Ma forearc ophiolote. The Watonga Formation is a mostly broen formation that consists of Middle-Late Ordovician pelagic rocks, the mafic oceanic substrate on which these were deposited; younger basalt and olistostromes of porbable ocean island origin; and stuff, sultstone and sandstone infered to be trench fill accreted in te Late Ordovician-Carbvoniferous interval.
Caprarelli, G., Pondrelli, M., Di Lorenzo, S., Marinangeli, L., Ori, G.G., Greeley, R. & Neukum, G. 2007, 'A description of surface features in north Tyrrhena Terra, Mars: Evidence for extension and lava flooding', ICARUS, vol. 191, no. 2, pp. 524-544.
View/Download from: UTS OPUS or Publisher's site
Caprarelli, G. & Reidel, S.P. 2005, 'A clinopyroxene-basalt geothermobarometry perspective of Columbia Plateau (NW-USA) Miocene magmatism', TERRA NOVA, vol. 17, no. 3, pp. 265-277.
View/Download from: UTS OPUS or Publisher's site
Caprarelli, G. & Reidel, S.P. 2004, 'Physical evolution of Grande Ronde Basalt magmas, Columbia River Basalt Group, north-western USA', MINERALOGY AND PETROLOGY, vol. 80, no. 1-2, pp. 1-25.
View/Download from: UTS OPUS or Publisher's site
Och, D.J., Leitch, E.C., Caprarelli, G. & Watanabe, T. 2003, 'Blueschist and eclogite in tectonic melange, Port Macquarie, New South Wales, Australia', Mineralogical Magazine, vol. 67, no. 4, pp. 609-624.
View/Download from: UTS OPUS or Publisher's site
The Rocky Beach Metamorphic Melange contains metre-scale phacoids of high-P low-T metamorphic rocks embedded in chlorite-actinolite schist. The phacoids include eclogite, glaucophane schist and omphacitite and provide evidence for four episodes of metamorphism with mineral assemblages: M1 = actinolite-glaucophane-titanite-apatite, M2 = almandine-omphacite-lawsonite ± quartz, M3 = phengite- glaucophane-K-feldspar-quartz, and M4 = chlorite-actinolite-calcite-quartz-titanite-white mica ± albite ± talc. M1-M3 occurred at a Neoproterozoic-Early Palaeozoic convergent plate boundary close to the eastern margin of Gondwana. Peak metamorphic conditions were attained during the static phase M2, with temperatures of ?560°C and pressures in excess of 1.8 GPa, equivalent to a depth of burial of at least 54 km.
Caprarelli, G. & Leitch, E.C. 2002, 'MORB-like rocks in a Palaeozoic convergent margin setting, northeast New South Wales', Australian Journal of Earth Sciences, vol. 49, no. 2, pp. 367-374.
View/Download from: UTS OPUS or Publisher's site
The Devonian mafic rocks from the Folly Basalt, northeast New South Wales, were emplaced in the forearc section of the Devonian-Carboniferous magmatic arc preserved in the western part of the New England Fold Belt. Trace-element abundances in fractionated metadolerites (maximum concentration of Ni=85 ppm) from the Folly Basalt outcropping near Nundle demonstrate that these rocks have MORB affinity. Chondrite-normalised rare-earth element patterns are smooth and quasi-horizontal; Ce/Yb ratios are 3.34-7.98; (La/Yb)N ratios range from 0.69 to 2.23; (La/Sm)N ratios of the rocks range from 0.63 to 1.55. The data are compatible with an origin of the melts from large degrees (> 15%) of partial melting of mantle peridotite. A plausible mechanism for the production and emplacement of depleted magmas in the forearc zone of the Middle Palaeozoic eastern Australian magmatic arc involves the subduction of a hot oceanic spreading centre, which could cause the presence of a region of asthenospheric temperatures below the upper plate. It is also suggested that sustained high-temperature conditions may have prevailed in the eastern Australian mantle for at least the last 400 million years.
Harrison, J., Heijnis, H. & Caprarelli, G. 2002, 'Historical pollution variability from abandoned mine sites, Greater Blue Mountains World Heritage Area, NSW Australia', Environmental Geology, vol. N/A, no. N/A, pp. N/A-687.
View/Download from: UTS OPUS
Caprarelli, G. & Leitch, E.C. 2001, 'Geochemical evidence from Lower Permian volcanic rocks of Northeast New South Wales for asthenospheric upwelling following slab break off', Australian Journal of Earth Sciences, vol. 48, no. 1, pp. 151-166.
View/Download from: UTS OPUS or Publisher's site
The ca280 Ma Alum Mountain Volcanics and Werrie Basalt were erupted in northeast New South Wales, Australia, during Early Permian lithospheric extension that separated discrete episodes of subduction of Carboniferous and Late Permian - Triassic age. The Alum Mountain rocks, which are preserved in two major synclines in the southeast Tamworth Belt, are mostly basalt, but andesite and rhyolite are also present. The Werrie Basalt found further north in the Tamworth Belt and in the floor of the Gunnedah Basin is composed mainly of basalt, but includes more evolved rocks in the vicinity of several eruptive centres. The Alum Mountain rocks have REE abundances similar to N-MORB, with flat REE patterns, (La/Sm)N ratios ranging from 0.54 to 1.07, and (La/Yb)N ratios from 0.94 to 2.78, suggesting an origin by large degrees of partial melting of asthenosphere at a depth < 75 km. The ?Nd values range from +5.61 to +8.73. The latter value corresponds to that of the depleted mantle at 0.2 Ga. Werrie Basalt samples have positive ?Nd values, ranging from +2.05 to +6.00, suggesting an asthenospheric origin for these rocks. Spider diagrams show a clear negative Nb anomaly, typical of subduction zones, but LREE/HREE [(La/Sm)N = 1.61 to 2.20; (La/Yb)N = 5.07 to 8.81), Ti/Zr, and Ti/P ratios are close to OIB values. The enriched character of the Werrie Basalt has resulted from either asthenospheric melts being progressively modified during ascent of fractionating magmas through the lithosphere, or by partial melting of a mantle metasomatised by subduction. The presence of a significant depleted-mantle component in the signature of the Lower Permian volcanic rocks indicates rise of the local mantle geotherm to allow extensive melting. We therefore propose a model of asthenospheric upwelling and lateral flow following breakoff of the Carboniferous subducting slab. Our model of asthenospheric convection as derived from eastern Australia suggests a major role for the asthenosphere in sub...
Caprarelli, G. & Leitch, E.C. 1998, 'Magmatic changes during the stabilisation of a cordilleran fold belt: The Late Carboniferous-Triassic igneous history of eastern New South Wales, Australia', Lithos, vol. 45, no. 1-4, pp. 413-430.
View/Download from: UTS OPUS or Publisher's site
In a 60 Ma interval between the Late Carboniferous and the Late Permian, the magmatic arc associated with the cordilleran-type New England Fold Belt in northeast New South Wales shifted eastward and changed in trend from north-northwest to north. The eastern margin of the earlier (Devonian-Late Carboniferous) arc is marked by a sequence of calcalkaline lava flows, tuffs and coarse volcaniclastic sedimentary rocks preserved in the west of the Fold Belt. The younger arc (Late Permian-Triassic) is marked by I-type calcalkaline granitoids and comagmatic volcanic rocks emplaced mostly in the earlier forearc, but extending into the southern Sydney Basin, in the former backarc region. The growth of the younger arc was accompanied by widespread compressional deformation that stabilised the New England Fold Belt. During the transitional interval, two suites of S-type granitoids were emplaced, the Hillgrove Suite at about 305 Ma during an episode of compressive deformation and regional metamorphism, and the Bundarra Suite at about 280 Ma, during the later stages of an extensional episode. Isotopic and REE data indicate that both suites resulted from the partial melting of young silicic sedimentary rocks, probably part of the Carboniferous accretionary subduction complex, with heat supplied by the rise of asthenospheric material. Both mafic and silicic volcanic activity were widespread within and behind the Fold Belt from the onset of rifting (ca. 295 Ma) until the reestablishment of the arc. These volcanic rocks range in composition from MORB-like to calcalkaline and alkaline. The termination of the earlier arc, and the subsequent widespread and diverse igneous activity are considered to have resulted from the shallow breakoff of the downgoing plate, which allowed the rise of asthenosphere through a widening lithospheric gap. In this setting, division of the igneous rocks into pre-, syn-, and post-collisional groups is of limited value.
Caprarelli, G., Tsutsumi, M. & Turi, B. 1997, 'Chemical and isotopic signatures of the basement rocks from the Campi Flegrei geothermal field (Naples, southern Italy): Inferences about the origin and evolution of its hydrothermal fluids', JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, vol. 76, no. 1-2, pp. 63-82.
View/Download from: UTS OPUS or Publisher's site
View/Download from: UTS OPUS or Publisher's site