UTS site search

Erin Gloag

Research Assistant, The ithree Institute

Journal articles

Gloag, E.S., Elbadawi, C., Zachreson, C.J., Aharonovich, I., Toth, M., Charles, I.G., Turnbull, L. & Whitchurch, C.B. 2017, 'Micro-Patterned Surfaces That Exploit Stigmergy to Inhibit Biofilm Expansion.', Frontiers in Microbiology, vol. 7, pp. 1-10.
View/Download from: UTS OPUS or Publisher's site
Twitching motility is a mode of surface translocation that is mediated by the extension and retraction of type IV pili and which, depending on the conditions, enables migration of individual cells or can manifest as a complex multicellular collective behavior that leads to biofilm expansion. When twitching motility occurs at the interface of an abiotic surface and solidified nutrient media, it can lead to the emergence of extensive self-organized patterns of interconnected trails that form as a consequence of the actively migrating bacteria forging a furrow network in the substratum beneath the expanding biofilm. These furrows appear to direct bacterial movements much in the same way that roads and footpaths coordinate motor vehicle and human pedestrian traffic. Self-organizing systems such as these can be accounted for by the concept of stigmergy which describes self-organization that emerges through indirect communication via persistent signals within the environment. Many bacterial communities are able to actively migrate across solid and semi-solid surfaces through complex multicellular collective behaviors such as twitching motility and flagella-mediated swarming motility. Here, we have examined the potential of exploiting the stigmergic behavior of furrow-mediated trail following as a means of controlling bacterial biofilm expansion along abiotic surfaces. We found that incorporation of a series of parallel micro-fabricated furrows significantly impeded active biofilm expansion by Pseudomonas aeruginosa and Proteus vulgaris. We observed that in both cases bacterial movements tended to be directed along the furrows. We also observed that narrow furrows were most effective at disrupting biofilm expansion as they impeded the ability of cells to self-organize into multicellular assemblies required for escape from the furrows and migration into new territory. Our results suggest that the implementation of micro-fabricated furrows that exploit stigmergy may be a ...
Turnbull, L., Toyofuku, M., Hynen, A.L., Kurosawa, M., Pessi, G., Petty, N.K., Osvath, S.R., Carcamo-Oyarce, G., Gloag, E.S., Shimoni, R., Omasits, U., Ito, S., Yap, X., Monahan, L.G., Cavaliere, R., Ahrens, C.H., Charles, I.G., Nomura, N., Eberl, L. & Whitchurch, C.B. 2016, 'Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms', NATURE COMMUNICATIONS, vol. 7.
View/Download from: UTS OPUS or Publisher's site
Gloag, E.S., Turnbull, L., Javed, M.A., Wang, H., Gee, M.L., Wade, S.A. & Whitchurch, C.B. 2016, 'Stigmergy co-ordinates multicellular collective behaviours during Myxococcus xanthus surface migration.', Scientific reports, vol. 6, p. 26005.
View/Download from: UTS OPUS or Publisher's site
Surface translocation by the soil bacterium Myxococcus xanthus is a complex multicellular phenomenon that entails two motility systems. However, the mechanisms by which the activities of individual cells are coordinated to manifest this collective behaviour are currently unclear. Here we have developed a novel assay that enables detailed microscopic examination of M. xanthus motility at the interstitial interface between solidified nutrient medium and a glass coverslip. Under these conditions, M. xanthus motility is characterised by extensive micro-morphological patterning that is considerably more elaborate than occurs at an air-surface interface. We have found that during motility on solidified nutrient medium, M. xanthus forges an interconnected furrow network that is lined with an extracellular matrix comprised of exopolysaccharides, extracellular lipids, membrane vesicles and an unidentified slime. Our observations have revealed that M. xanthus motility on solidified nutrient medium is a stigmergic phenomenon in which multi-cellular collective behaviours are co-ordinated through trail-following that is guided by physical furrows and extracellular matrix materials.
Gloag, E.S., Turnbull, L. & Whitchurch, C.B. 2015, 'Bacterial stigmergy: an organising principle of multicellular collective behaviours of bacteria.', Scientifica, vol. 2015, p. 387342.
View/Download from: UTS OPUS
The self-organisation of collective behaviours often manifests as dramatic patterns of emergent large-scale order. This is true for relatively "simple" entities such as microbial communities and robot "swarms," through to more complex self-organised systems such as those displayed by social insects, migrating herds, and many human activities. The principle of stigmergy describes those self-organised phenomena that emerge as a consequence of indirect communication between individuals of the group through the generation of persistent cues in the environment. Interestingly, despite numerous examples of multicellular behaviours of bacteria, the principle of stigmergy has yet to become an accepted theoretical framework that describes how bacterial collectives self-organise. Here we review some examples of multicellular bacterial behaviours in the context of stigmergy with the aim of bringing this powerful and elegant self-organisation principle to the attention of the microbial research community.
Gloag, E.S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L.M., Mililli, L., Hunt, C., Lu, J., Osvath, S.R., Monahan, L.G., Cavaliere, R., Charles, I.G., Wand, M., Gee, M., Ranganathan, P. & Whitchurch, C.B. 2013, 'Self-organization of bacterial biofilms is facilitated by extracellular DNA', Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 28, pp. 11541-11546.
View/Download from: UTS OPUS or Publisher's site
Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the bulldozer aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA
Gloag, E.S., Javed, M.A., Wang, H., Gee, M.L., Wade, S.A., Turnbull, L. & Whitchurch, C.B. 2013, 'Stigmergy: A key driver of self-organization in bacterial biofilms.', Communicative & integrative biology, vol. 6, no. 6, p. e27331.
View/Download from: UTS OPUS
Bacterial biofilms are complex multicellular communities that are often associated with the emergence of large-scale patterns across the biofilm. How bacteria self-organize to form these structured communities is an area of active research. We have recently determined that the emergence of an intricate network of trails that forms during the twitching motility mediated expansion of Pseudomonas aeruginosa biofilms is attributed to an interconnected furrow system that is forged in the solidified nutrient media by aggregates of cells as they migrate across the media surface. This network acts as a means for self-organization of collective behavior during biofilm expansion as the cells following these vanguard aggregates were preferentially confined within the furrow network resulting in the formation of an intricate network of trails of cells. Here we further explore the process by which the intricate network of trails emerges. We have determined that the formation of the intricate network of furrows is associated with significant remodeling of the sub-stratum underlying the biofilm. The concept of stigmergy has been used to describe a variety of self-organization processes observed in higher organisms and abiotic systems that involve indirect communication via persistent cues in the environment left by individuals that influence the behavior of other individuals of the group at a later point in time. We propose that the concept of stigmergy can also be applied to describe self-organization of bacterial biofilms and can be included in the repertoire of systems used by bacteria to coordinate complex multicellular behaviors.