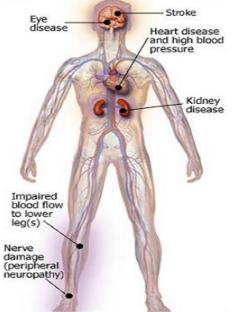

SCHOOL OF LIFESCIENCES FACULTY OF SCIENCE

GENE THERAPY FOR TYPE 1 DIABETES

Ann M. Simpson Centre for Health Technologies

NORMAL INDIVIDUAL


In a normal individual, blood glucose levels are determined by insulin that is produced by the β -cell of the pancreas

POSSIBLE THERAPIES (1)

Insulin Therapy

Does not provide a cure and patients develop the chronic complications of diabetes.

Retinopathy	Blindness
Nephropathy	Kidney Failure
Neuropathy	Nerve Degeneration
Macrovascular	Stroke
	Cardiovascular disease
	Gangrene

POSSIBLE THERAPIES (2)

Transplantation of Insulin-Secreting pancreatic tissue

Too few donors

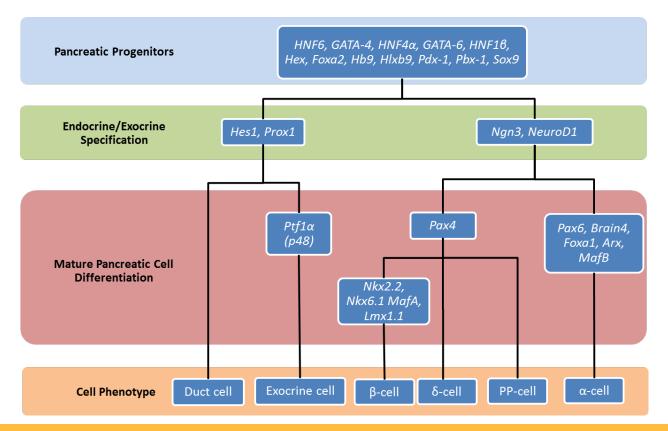
Patients must be immunosuppressed

Stem Cells

May be prone to autoimmune attack Immunosuppression

Gene Therapy

Production of replacement β-cells by genetic engineering

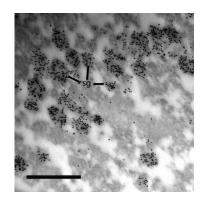

WHAT DOES AN ARTIFICIAL BETA CELL NEED TO FUNCTION CORRECTLY?

- The ability to accurately sense glucose levels
- The ability to metabolise glucose
- The ability to store insulin for later secretion

Liver cells have:

- Similar glucose-sensing apparatus to pancreatic β cells
- Synthesise and secrete complex proteins
- Ability to undergo differentiation into β-like cells that possess storage granules

BETA CELL TRANSCRIPTION FACTORS


ALTERNATIVE GENE THERAPY SOLUTIONS

- Insulin-secreting liver cell line that can be encapsulated and used as a treatment
- Direct delivery of genes to the liver curing the disease


CREATION OF MELLIGEN CELLS

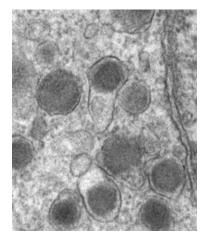
- As an alternative to the transplantation of islets, a human liver cell line has been genetically engineered to reverse type 1 diabetes.
- Melligen cells which express β cell transcription factors store insulin in granules and secrete insulin to glucose correctly, reversing diabetes.

MELLIGEN CELLS: REVERSAL OF DIABETES

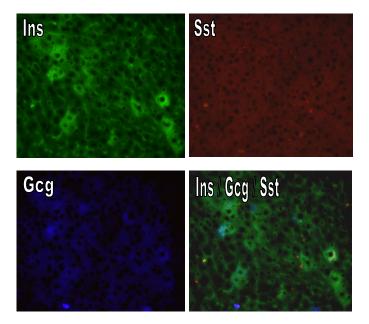
Lawandi et al (2015) Molecular Therapy- Methods & Clinical Development **2**, 15011; doi:10.1038/mtm.2015.11.

http://newsroom.uts.edu.au/news/2014/11/breakthrough-diabetes-research-be-commercialised http://ir.pharmacytebiotech.com/press-releases/detail/108/pharmacyte-biotech-receives-patentprotection-of-the

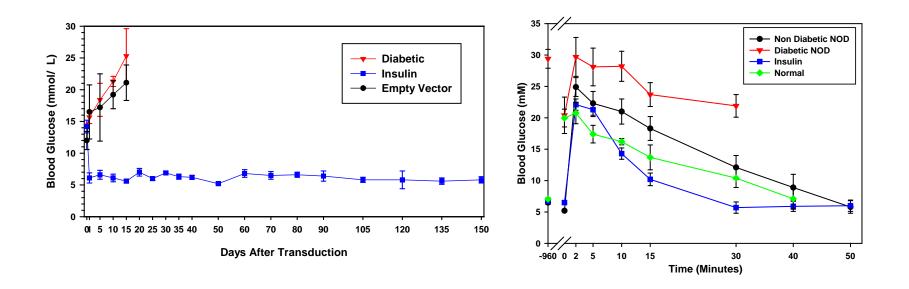
- Capsules are made of bio-inert material (cellulose/cotton)
- Capsules have pores for nutrient and waste transfer
- Pores are too small for immune system cells to enter or encapsulated live cells to leave
- Long-term (5+ years) frozen storage of encapsulated live cells with more than 95% viability of cells upon thawing
- Manageable logistics and long shelf-life
- Cell-in-a-Box[®] encapsulation performed in a cGMP-compliant facility
- Other live cell encapsulation technologies use alginate (derived from seaweed). All are far less robust and stable. None can be frozen to ship
- Cell-in-a-Box [®] capsules shown to be safe, effective and durable http://pharmacyte.com/diabetes/


DIRECT DELIVERY OF INSULIN TO LIVERS

Human insulin is delivered directly in a viral vector to animal livers by a surgical technique that isolates the liver from the circulation


Ren B et al (2007) Diabetologia 50: 1910-1920. Ren B, et al (2013) J Gene Medicine 15: 28-41

.


REVERSAL OF DIABETES IN NON OBESE DIABETIC (NOD) MICE

Storage granules

REVERSAL OF DIABETES IN NOD MICE

Spontaneous expression of β -cell transcription factors

FUTURE DIRECTIONS/ PARTNERING

Different Cell Types Bone marrow mesenchymal stem cells Human islet progenitor cells Gall bladder cells

Pre-clinical Animal Models: Direct delivery of insulin Humanised FRG mice Large animal models

ACKNOWLEDGEMENTS UTS Binhai Ren Bronwyn O'Brien Najah Nassif Janet Lawandi Chang Tao Michelle Byrne Edwin Ch'ng Prudence Gatt Fraser Torpy

USyd Anne Swan Paul Williams

Australian Government

National Health and Medical Research Council

Pebecca L. Cooper

Ming Wei

Griffith

<u>Ann.Simpson@uts.edu.au</u>: gene therapy, diabetes, vectors, molecular biology